[image: image1.png]The University of Dublin
Trinity College




Trinity College, Dublin – Coláiste na Tríonóide, BÁC 

Junior Sophister PCAM

PCAM –Introduction to Hückel Molecular Orbital Theory and the Simulation of Π-Conjugated Systems:

Experiment Ia: Linear and Cyclic Π-Systems
Dr. D. A. Mac Dónaill

dmcdonll@tcd.ie
Introduction to Computational Quantum Chemistry

Aim:  The purpose of this practical is to introduce you to a simple quantitative molecular orbital method.  During this practical you will learn about (i) the LCAO approximation, (ii) the secular determinant, and (iii) the interpretation on MOs as solutions to the ‘particle-in-a-box’ problem.

Solutions to the Schrödinger equation provide for the exact description of molecular systems.  However, the 3-body problem states that analytical solutions are not available for systems containing three of more independent particles.  Numerical solutions are possible, but for all but the simplest systems, exact solutions prove computationally intractable not withstanding recent advances in computer technology.

Systems of interest to chemists contain of the order of 101 to 105 atoms and up to 107 electrons.  Computational chemistry is therefore the art of the possible – it is about the judicious selection of those components of a calculation which may be either neglected or replaced by empirical parameters, thereby reducing the cost of a calculation while having little effect on the final physical result.  The quantum mechanics of molecular systems – Quantum Chemistry – is largely about the elimination of some (computationally) costly interactions, which often appear as complex integrations.  For example, quantum chemical methods usually neglect the explicit consideration of ‘core’ electrons, that is, electrons below the valence shell.  Such electron become part of an effective nucleus or core, which obviously has a lesser charge that the actual nucleus.

Many quantum chemical methods are termed semi-empirical.  Such methods have a quantum mechanical framework for the valence electrons.  Some integrals are neglected.  The effects of these approximations are in principle compensated for by the introduction empirical parameters.  The values of such parameters are adjusted so that calculations reproduce experimental results – whence the term semi-empirical.

The LCAO Approximation

The Linear Combination of Atomic Orbitals approximation is a common approximation in quantum chemistry.  In short, it asserts that molecular orbitals (MOs) Ψ can be reasonably described in terms of atomic orbitals (AOs)(,
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Consider this approximation for the simple systems H2 and HCl.  Sketch what you think the MOs might look like.  How reasonable is the LCAO approximation in your view?

There is a principle in physics known as the ‘Variation Principle’, which states that the energy of an arbitrary wavefunction cannot be lower than the true lowest energy of the system.  In practice this means that if we have two different guesses for a wavefunction, the guess with the lower energy is the better of the two.  Extending this argument we quickly see that finding the best (most physically realistic) MOs reduces to determining those values for cik, which yield the lowest energies for Ψk.

The Secular Determinant

The secular determinant shown below is that for a 3x3 system.  The roots of this 3x3 determinant are MO energies that can be used to obtain the MO coefficients, cik. The solution satisfies the variation principle.
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where
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and
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represent interactions between atomic orbitals.  You should be able to see that the determinant is largely composed of energy terms defining the local depth (diagonal terms), and shape (off diagonal terms) of the box.

Hückel Theory

Hückel theory is perhaps the simplest of all quantum chemical methods.  Only planar molecules, in which the π-orbitals do not interact with σ-orbitals, are considered.  (Can you explain why π and σ-orbitals do not interact?).  The beauty of the model lies in the fact that more or less reasonable approximations eliminate all integrals.  The model is computationally very simple, and yet it yields considerable insight into π-systems.

The Hückel Approximations

The terms Hii may be interpreted as the average energy of an electron in atomic orbital i.  Hückel theory avoids any integration and considering p-orbitals for C atoms we make the assignment
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If we assume the energy of p-orbital in a C atom does not change very much with environment we can set all Hii = α.  α is a parameter which can be determined later by experiment.

The Hij terms may be interpreted as interaction energies.  Hückel theory makes the assignment
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 = β,  i and j neighbours,
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 = 0,  i and j not neighbours

Hückel makes the further approximation that all
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The Hückel determinant becomes
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Dividing by β we get
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Letting (α-E)/β = x the Hückel determinant becomes


[image: image14.wmf]0

1

0

1

1

0

1

=

x

x

x


This determinant reflects the connectivity of the system and as such is sometimes referred to as a topological determinant.

Topological determinants for two other systems are shown below.
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Finally, a computer program solves the determinant yielding the eigenvalues (energies) for the system.  Note that the matrix is symmetric about the diagonal.  The matrix
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 is input in the format 
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Using the input matrix the computer determines the eigenvalues, eigenvectors and the total energy calculations based on the parameters on α and β. 
Assignment I:  Investigation of Linear and Circular π-Systems

In the series of computational experiments that follow you will investigate:

(i) linear π-systems,

(ii) circular π -systems, including aromatic systems, and

(iii) heteraromatic systems.

In this first assignment you will concentrate on linear and circular π-systems.

Experimental

You are provided with the program HUCKEL.EXE which performs the Hückel calculations, a sample input file (for benzene).  Operation and execution of the code, as well as interpretation of the output will be discussed in the pre-practical talk.

Do NOT edit the files provided.  Make a directory (or sub-directory) and copy the files into that directory.  Copy the sample file as needed and edit to generate input files for the systems considered.
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Generate input files for the following molecules
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In each case execute the Hückel program and examine the output.  Sketch the molecular orbitals and plot their energies.

Consider the cyclic systems
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As with the linear systems generate the input files and execute the code

Practical Write-Up

1. The MO energy level diagram for ethene is sketched below (left) along with the approximate shapes of the corresponding MOs (right): 
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Sketch orbital energy level diagrams for molecules B-E as well as approximate shapes for the occupied MOs

2. Sketch the three lowest energy wavefunctions for a particle in a 1-dimensional box and compare these to the shapes of the occupied MOs for molecules B-E (q.1)

3. Sketch orbital energy level diagrams for molecules G and I, as well as approximate shapes for the occupied MOs

4. Compare occupied MOs in corresponding linear and circular systems, e.g. C and G, E and I.  Can you explain the differences?

5. Finally, compare the MOs of the cyclic systems with particle-in-a-box solutions.

Post Practical Questions and Points for Discussion

These points will be discussed in the pre-practical talk before your next Hückel Assignment and are not to be included in the write up for this assignment.

(i) Consider how you might distinguish between cyclohexatriene and benzene.  Can you explain why benzene is relatively stable?
(ii) Would you expect cyclobutadiene to be stable?
(iii) How might the MOs for propylene differ from ethylene (if at all)?
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(iv) How might heteroatoms (non-C atoms) be taken into account?  Can you suggest an input file for pyridine?
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(v) In ethylene you generated two MOs and interpreted these as particle-in-a-box solutions.  Yet there are an infinite number of wavefunctions in a box; where do higher energy solutions come from?

Sample Input File

Benzene
6  6
0.0
1.0 0.0

0.0 1.0 0.0

0.0 0.0 1.0 0.0

0.0 0.0 0.0 1.0 0.0
1.0 0.0 0.0 0.0 1.0 0.0






_973928324

_973930781.unknown

_973933464

_1004794285.unknown

_1257916758.unknown

_1354020569

_1004794025.unknown

_973933667

_973931174.unknown

_973933374

_973930869.unknown

_973931086.unknown

_973930368.unknown

_973930652

_973928390.unknown

_973864064.unknown

_973864706.unknown

_973864745.unknown

_973928033.unknown

_973864381.unknown

_973863084.unknown

_973863108.unknown

_973862848.unknown

